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A B S T R A C T   

Diesel particulate matter (DPM), a major subset of urban fine particulate matter (PM2.5), raises huge concerns 
for human health and has therefore been classified as a group 1 carcinogen by the International Agency for 
Research on Cancer (IARC). However, as DPM is a complex mixture of various chemicals, understanding of 
DPM’s toxicity mechanism remains limited. As the major exposure route of DPM is through inhalation, we herein 
investigated its toxicity mechanism based on the Adverse Outcome Pathway (AOP) of pulmonary fibrosis, which 
we previously submitted to AOPWiki as AOP ID 206 (AOP206). We first screened whether individual chemicals 
in DPM have the potential to exert their toxicity through AOP206 by using the ToxCast database and deep 
learning models approach, then confirmed this by examining whether DPM as a mixture alters the expression of 
the molecular initiating event (MIE) and key events (KEs) of AOP206. For identifying the activeness of the 
component chemicals of DPM, we used 24 ToxCast assays potentially related to AOP206 and deep learning 
models based on these assays, which were identified and developed in our previous study. Of the 100 individual 
chemicals in DPM, 34 were active in PPARγ (MIE)-related assay, of which 17 were active in one or more KEs. To 
further identify whether individual chemicals in DPM are related to the MIE of AOP206, we performed molecular 
docking simulation on PPARγ for the chemicals showing activeness. Benzo[e]pyrene, benzo[a]pyrene and other 
related chemicals were the most likely to bind to PPARγ. In in vitro experiments, PPARγ activity increased with 
exposure of the DPM mixture, and the protein expression of PPARγ (MIE), and fibronectin (AO) also tended to be 
increased. Overall, we have demonstrated that AOP206 can be applied to identify the toxicity pathway of DPM. 
Further, we suggest that applying the AOP approach using ToxCast and deep learning models is useful for 
identifying potential toxicity pathways of chemical mixtures, such as DPM, by determining the activity of in-
dividual chemicals.   

1. Introduction 

Fine particulate matter (PM2.5) is defined as “fine” sized particulate 
matter with an aerodynamic diameter of less than 2.5 μm, and its small 
size causes a number of adverse effects on human health, which is of 
increasing interest in recent years (Achilleos et al., 2017; Schlesinger, 
2007). Various epidemiology and toxicology studies have been con-
ducted using PM2.5 sampled in the real world as well as using standard 
materials (Park et al., 2018; Piao et al., 2018; Wang et al., 2019). Those 
studies suggested PM2.5 could be related to development of various 
diseases, such as cardiovascular and respiratory diseases (Song et al., 
2019; Wang et al., 2019). Oxidative stress and inflammation were most 
frequently reported as underlying mechanism of toxicity of PM2.5 (He 
et al., 2017). Most PM2.5 derives from combustion, such as gasoline and 

diesel fuels by motor vehicles, burning of natural gas to generate elec-
tricity, and wood burning (Robinson et al., 2010). Diesel engines emit a 
complex mixture of air pollutants, including both gaseous and solid 
materials. The solid material in diesel exhaust is known as diesel par-
ticulate matter (DPM). More than 90% of DPM is less than 1 µm in 
diameter (Zheng et al., 2017). The International Agency for Research on 
Cancer (IARC) classified diesel engine exhaust as Group 1 (carcinogenic 
to humans), based on sufficient evidence of carcinogenicity (IARC, 
2014). In addition, DPM is known to cause lung diseases such as pul-
monary fibrosis, asthma and chronic obstructive pulmonary disease 
through an inflammatory response (Reynolds et al., 2011; Ristovski 
et al., 2012). 

However, understanding of DPM’s toxicity mechanism remains 
limited due to complex nature of DPM as a mixture of various chemicals. 
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DPM is a mixture of hundreds of chemicals including various metals and 
organic compounds such as polycyclic aromatic hydrocarbon (PAH), 
sulfur, nitrogen, etc. due to its very small size, large surface area and 
hence easy absorption of chemicals. The chemical composition of DPM is 
very variable depending on the combustion time and location, and is 
also influenced by various factors such as the operating condition of the 
engine and the type of fuel (Ristovski et al., 2012). Since the toxic effects 
and pathways of DPM can vary depending on the composition of the 
chemicals, studying the toxicity of DPM itself has been limited in iden-
tifying the mechanism of toxicity. 

Adverse Outcome Pathway (AOP) is a framework for capturing 
existing knowledge and can be applied to chemical toxicity screening 
(Groh et al., 2015). AOP is a toxicological construct that connects 
mechanistic information to apical endpoints in a formalized way for 
regulatory purposes (Wittwehr et al., 2017). AOP has several potential 
applications in hazard identification and risk assessment of chemicals. 
Among them, prioritization of chemicals for full toxicity testing and 
screening level hazard identification is currently the most popular 
application (LaLone et al., 2017). Due to various technical difficulties 
and excessive time consumption for testing inhalation toxicity testing, 
AOPs can support a more efficient approach to screening level evalua-
tions of inhaled toxicants, such as DPM. 

Pulmonary fibrosis is one of the major health outcomes of inhalation 
exposure of hazardous substances. In our previous study, we developed 
AOP on PPARγ inactivation leading to lung fibrosis for inhalation 
toxicity screening (Jeong et al., 2019). Based on a literature search and 
compilation of relevant information, PPARγ inactivation was proposed 
as a molecular initiating event (MIE); activation of TGF-β, inflammation, 
epithelial mesenchymal transition (EMT), and collagen deposition were 
proposed as key events (KEs); and pulmonary fibrosis is the adverse 
outcome (AO). We have submitted this AOP to AOPWiki 
(https://aopwiki.org/aops/206), which is included in Organization for 
Economic Cooperation and Development (OECD) program. 

In the same study, to validate the AOP, we have identified ToxCast 
assays relevant to this AOP, and deep learning classification models 
were subsequently developed that can classify chemical activity based 
on ToxCast database. Once trained to recognize chemical structures 
associated with active hit calls in selected ToxCast assays, the models 
can be used to predict what other structures could be expected to be 
active. Consequently, the models can help select novel chemicals that 
may be useful for the experimental validation of AOP206 (Jeong et al., 
2019). 

As the major exposure route of DPM is through inhalation, in this 
study, we investigated DPM’s toxicity mechanism using the AOP of 
pulmonary fibrosis, which we previously developed. We therefore con-
ducted a tiered approach to address whether DPM exerts toxicity 
through the AOP206, first by using the ToxCast database and deep 
learning models approach for screening the activity of individual 
chemical components of DPM, followed by experiments on the MIE and 
KEs of AOP using DPM as a mixture. For identifying the activeness of the 
component chemicals of DPM, we used 24 ToxCast assays potentially 
related to the AOP206 and deep learning models based on these assays, 
which were identified and developed in our previous study (Jeong et al., 
2019). To further identify whether individual chemicals in DPM are 
related to the MIE of the AOP206, we performed molecular docking 
simulation on PPARγ using the chemicals that showed activeness from 
ToxCast assay and deep learning model. We then conducted in vitro 
experiments on the MIE and KEs of the AOP206 using a DPM mixture by 
examining the binding activity of PPARγ and expression of KE proteins. 

2. Materials and methods 

2.1. Preparation of PM2.5 

DPM is chemical mixture of more than 100 PAHs. The experiments 
were conducted using DPM NIST 1650b, purchased from Sigma-Aldrich, 

Inc. (St. Louis, MO, USA). Based on information from the National 
Institute of Standards & Technology (NIST), individual chemicals in 
DPM are listed in Table S1. 

DPM stock solution (10 mg/mL) was prepared in dimethyl sulfoxide 
(DMSO) and sonicated for 60 min to avoid agglomeration of the sus-
pended DPM particles. Experiments were performed within 1 h of stock 
preparation to avoid variability in DPM composition in solution. 

2.2. ToxCast assays relevant to the AOP of pulmonary fibrosis 

As described previously (Jeong et al., 2019), ToxCast assays relevant 
to the AOP of pulmonary fibrosis were identified. In total, 24 assays were 
selected: 4 of PPARγ-, 4 of TGF-β-, 3 of NF-κB-, 10 of Inflammation- and 
3 of EMT-related targets (Table S2). We used ToxCast & Tox21 INVI-
TRODB_V2 summary files (https://www.epa.gov/chemical-research 
/exploring-toxcast-data-downloadable-data) to select relevant assays. 

2.3. Deep learning models 

2.3.1. Data preparation 
Using the ToxCast in vitro assays data, we built 24 artificial neural 

network models as described previously (Jeong et al., 2019). The ca-
nonical simplified molecular-input line-entry system (SMILES) strings 
describing the structure of the chemicals were collected from the Pub-
Chem database (https://pubchem.ncbi.nlm.nih.gov/). The SMILES 
strings and ToxCast hit call data were then prepared as text files. Because 
each assay had a different number of experimental data, the number of 
input data to build the model varied. 

2.3.2. Data imbalance 
The ToxCast hit call dataset is highly imbalanced, so that in many 

assays the ratio of inactive data far exceeds that of active data. A bias 
present between the classes can hinder the performance of the deep 
learning classification model (Wang et al., 2019), which classifies active 
and inactive chemicals based on chemical structure information. 
Therefore, we used the Synthetic Minority Oversampling Technique 
(SMOTE) to generate synthetic minority data by interpolating between 
existing minority data and their nearest neighbors to oversample the 
minor class (Kass and Raftery, 1995). 

2.3.3. Multilayer perceptron modeling 
For each ToxCast assay, we built 24 multi-layer perceptron (MLP) 

models. The MLP, a deep neural network, is a widely used deep learning 
algorithm due to its simplicity (Hamadache et al., 2017). The structure 
of MLP consists of an input layer, a dense layer with a RELU activator, 
and a dense single neuron layer as the output with a sigmoidal activator. 
MLP was implemented by using Python 3.6, with Keras, the Python open 
source neural network library, running on top of TensorFlow library. 
The SMILES code was transformed into Morgan Fingerprints with a 
radius of two bonds using an RDKit (http://www.rdkit.org). Sci-kit 
Learn toolkit was used to perform the stratified 5-fold cross-validation. 
In 5-fold cross-validation, the dataset is randomly partitioned into 5 
blocks of equal size, and the learning algorithm runs 5 times with each of 
the blocks being used as the test set. The average of the 5 results gives 
the test accuracy of the models (Diamantidis et al., 2000). 

2.4. Docking simulations 

2.4.1. Preparation of ligands 
The 3D structures of all ligands were collected in .mol2 format from 

the ZINC database (Irwin et al., 2012). These files could not be directly 
used for docking simulation; thus they were converted into .pdbqt 
format using AutoDockTools v1.5.6 (Morris et al., 2009; Sanner, 1999). 

2.4.2. Preparation of PPARγ 
The coordinates of the X-ray crystal structures of LBDs of the 
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receptors (PDB ID: 6C5T) were retrieved from the Protein Data Bank 
(PDB) (Berman et al., 2002). The structures were edited to remove li-
gands and heteroatoms (HETATM) using Discovery Studio Visualizer 
v4.5. 

2.4.3. Docking simulations 
We used AutoDock Vina v1.1 (Trott and Olson, 2010) programs to 

investigate the binding of ligands to receptors. Required input files for 
AutoDock Vina were prepared using AutoDockTools v1.5.6 (The Scripps 
Research Institute, La Jolla, CA, USA). Preparation of files involved 
changing atom type, removing water molecules, and adding polar 
hydrogen atoms and Gasteiger charges. The grid box size was kept as 62, 
52, and 58 for X, Y, and Z, respectively, and the grid points spacing was 
1 Å. The structure files were saved in PDBQT format. Molecular docking 
analysis was performed using AutoDock Vina v1.1 (The Scripps 
Research Institute). The exhaustiveness was set to 128 and the 
maximum number of simultaneous threads was set to 2. The results with 
best conformation and energetic were selected for analysis. Discovery 
Studio Visualizer v4.5 (BIOVIA, San Diego, CA, USA) was used for 
visualization and analysis of the protein–ligand complexes. 

2.5. PPARγ binding assay 

To identify the binding activity of DPM to the PPARγ receptor, Trans- 
FACTORIAL assay (Romanov et al., 2008) was performed by Attagene 
(Morrisville, NC, USA) for assessing the agonist/antagonist properties of 
the compounds. The assay uses HepG2 cells (human liver carcinoma 
cells) to assess the transfected nuclear receptor activity. The assay was 
conducted in triplicate at two concentrations (50 ppm and 100 ppm) of 
DPM after 24 h exposure. The detailed methods are provided in the 
Supplementary materials. 

2.6. Cell culture and treatment 

BEAS-2B cells (human bronchial epithelial cells) were purchased 
from the American Type Culture Collection (ATCC; Manassas, USA), 
cultured in DMEM/F12 (GIBCO, Invitrogen, USA) and supplemented 
with 10% (v/v) fetal bovine serum and 1% (v/v) antibiotics at 37 ◦C a 
5% CO2 atmosphere. BEAS-2B cells were exposed to 0, 0.1, 1 and 10 ppm 
of DPM for 24 h. From the stock solutions, experimental concentrations 
of DPM were obtained by dilution in the cell culture medium. 

2.7. Western blot 

After harvesting, the cell extract was prepared in protein extraction 
buffer and the protein concentration was measured by Bradford method. 
Equal amounts (20 mg) of proteins were separated on 12% Mini- 
PROTEAN@ TGX Gels, Stain-Free Gels (Bio-Rad Laboratories, Inc., CA, 
USA) and transferred with Trans-Blot Turbo Transfer Pack (Bio-Rad 
Laboratories, Inc.). The membranes were blocked with 3% bovine serum 
albumin (BSA) in Tween-20 tris-buffered saline (TTBS) at room tem-
perature. The primary antibody was used at 1:1000 dilutions and the 
secondary antibody was used at 1:10000 dilutions. Clarity Max Western 
ECL Substrate (Bio-Rad Laboratories, Inc.) and ChemiDoc XRS+ (Bio- 
Rad Laboratories, Inc.) were used to detect bands. Blots were developed 
using an enhanced chemiluminescence western blotting detection kit 
(Amersham, Little Chalfont, England). The tested proteins were PPARγ 
(catalog: ab59256, 57 kDa), TGF-β (catalog: ab179695, 44 kDa), TNF-α 
(catalog: ab9635, 26 kDa), fibronectin (catalog: ab32419, 263 kDa), and 
β-actin (catalog: sc-47778, 43 kDa). The β-actin antibody was purchased 
from Santa Cruz Biotechnology, Inc. (CA, USA), and other antibodies 
were purchased from abcam (England). Three biological replicates were 
used for each analysis. 

2.8. Statistics 

The statistical significance of differences among treatment groups 
was determined using the one-way ANOVA test and followed by a post- 
hoc test (Tukey, p < 0.05). All statistical analyses were carried out using 
SPSS 13.0 (SPSS Inc., Chicago, Il, USA) and graphs were plotted using 
SigmaPlot 12.0 (Systat Software, Inc., San Jose, CA, USA). 

3. Results and discussion 

Previously, we developed an AOP where antagonism of PPARγ leads 
to pulmonary fibrosis (Jeong et al., 2019). The MIE is an antagonism of 
PPARγ, which increases the profibrotic effect of TGF-β/Smad3 signaling 
(KE1). Then, the TGF-β signaling pathway and oxidative stress pathway 
lead to increased inflammatory cytokine production (KE2), which in 
turn drives EMT (KE3) to result in deposition of an interwoven network 
of collagens (KE4). Increasing amounts of collagen lead to increased 
tissue stiffness and to tissue damage and scarring or fibrosis, the AO 
(Fig. S1). 

As the major exposure route of DPM is through inhalation, we 
investigated the general mechanism of toxicity related to the hazardous 
potential of DPM using AOP206 by examining the activity of individual 
chemicals in DPM to the MIE and KEs of AOP206 using an in silico-in vitro 
tiered approach. We first conducted in silico screening of individual 
chemical components of DPM using the ToxCast database-deep learning 
approach and molecular docking, followed by in vitro experiments on the 
MIE and KEs of AOP using DPM as a mixture. The workflow of this study 
is presented in Fig. 1. 

3.1. Preparation of ToxCast assays and deep learning models relevant to 
AOP206 

First, we used 24 previously identified assays related to AOP206 
from the ToxCast database: 4 PPARγ, 4 TGF-β, 3 NF-κB, 10 Inflammation 
and 3 EMT (Jeong et al., 2019). The target family of inflammation is 
cytokines, including IL1α, IL6, and TNF-α. The target family of EMT is 
protease, including MMP2 and MMP9. A detailed description of each 
assay is summarized in Table S2. 

Next, we used 24 MLP models, also developed in our previous study 
(Jeong et al., 2019), to classify the activities of each assay related to 
AOP206. As described previously, the model accuracy obtained using 
stratified 5-fold cross-validation ranged from 87.16 to 99.76 and the 
average accuracy was 95.73 (Table S3). In addition to the model accu-
racy, other metrics that determine whether the model is well developed 
include the true positive rate (sensitivity), which ranged from 0.91 to 
1.00, and the average true negative rate (specificity), which ranged from 
0.83 to 1.00. 

3.2. Identification of individual chemicals of DPM interfering with the 
AOP related assays 

We identified whether individual chemicals in DPM were tested on 
selected ToxCast assays. For the tested chemicals, active chemicals were 
identified for each assay, whereas for chemicals not tested, their activity 
was predicted using the MLP deep learning models. Taking into account 
the experimental results from the ToxCast database or the predicted 
results from the deep learning models, the number of active chemicals 
on the 24 relevant assays was identified (Table 1). In assays related to 
PPARγ activity, a MIE, a total of 34 chemicals out of 100 were active. 
This fairly high ratio suggests that the DPM mixture is also likely to be 
active against PPARγ. Since the proportion of active chemicals was 
higher in the ToxCast experimental data than in the deep learning pre-
dictions, the potential of PPARγ activity was more reliable than the as-
says showed higher in deep learning prediction than in assay itself (i.e. 
TGF-β and inflammation). In the case of TGF-β, KE1, 17 chemicals were 
shown to be active, equivalent to a ratio of one sixth, which is considered 

J. Jeong et al.                                                                                                                                                                                                                                    



Environment International 147 (2021) 106339

4

to be a ratio that can sufficiently affect the toxicity of the mixture. Most 
chemicals were predicted to be active chemicals through deep learning 
models. In the case of NF-κB, corresponding to KE2, 10 chemicals were 
analyzed to be active. Compared with ToxCast, the deep learning models 
identified more active chemicals. In inflammation, KE2, 26 chemicals 
were active. Similarly, significant numbers of chemical were predicted 
to be active in the deep learning models. The number of active chemicals 
per inflammatory marker was 20 for IL1α, 2 for IL6, and 4 for TNF-α. In 
EMT, KE3, 18 chemicals were analyzed as active. Due to the lack of 
ToxCast experimental data, most were predicted to be active chemicals 
through deep learning models. 

3.3. Confirmation of the MIE and KEs activity 

3.3.1. Validation of the MIE of individual chemicals in DPM using in silico 
molecular docking 

To validate whether DPM could affect the activity of PPARγ, we 
performed molecular docking simulation on PPARγ. Molecular docking 
simulation was carried out with the 34 ligands that were active in at 
least one assay of PPARγ, including ToxCast data and deep learning 
prediction. For each ligand, among many docking positions, only those 
with the highest docking score were chosen. Since the affinity data 
represent the free energy of the coupling in the AutoDock Vina v1.1 
docking software, a large absolute value of affinity energy means that 

Fig. 1. Schematic overview of the workflow of this study.  

Table 1 
Identification of individual chemicals interfering with the AOP of pulmonary fibrosis (AOP206)-related assays.  

AOP206 Assay ToxCast Deep learning Total 

Number of 
chemicals 

Number of Active 
chemicals (%) 

Number of 
chemicals 

Number of Active 
chemicals (%) 

Number of Active 
chemicals (%) 

MIE PPARγ ATG_PPARg_TRANS_up 19 5 (26) 81 13 (16) 34 (34) 
TOX21_PPARg_BLA_Agonist_ratio 28 5 (18) 72 14 (19) 
TOX21_PPARg_BLA_antagonist_ratio 28 1 (4) 72 5 (7) 
NVS_NR_hPPARg 3 0 (0) 97 3 (3) 

KE1 TGF-β ATG_TGFb_CIS_dn 19 1 (5) 81 0 (0) 17 (17) 
ATG_TGFb_CIS_up 19 1 (5) 81 1 (1) 
BSK_BE3C_TGFb1_down 18 0 (0) 82 1 (1) 
BSK_KF3CT_TGFb1_down 18 1 (6) 82 12 (15) 

KE2 NF-κB ATG_NF_kB_CIS_dn 19 0 (0) 81 0 (0) 10 (10) 
ATG_NF_kB_CIS_up 19 0 (0) 81 1 (1) 
TOX21_NFkB_BLA_agonist_ratio 28 3 (11) 72 6 (8) 

Inflammation BSK_BE3C_IL1a_down 18 0 (0) 82 11 (13) 26 (26) 
BSK_BE3C_IL1a_up 17 0 (0) 83 0 (0) 
BSK_KF3CT_IL1a_down 18 2 (11) 82 16 (20) 
BSK_KF3CT_IL1a_up 17 0 (0) 83 0 (0) 
BSK_LPS_IL1a_down 18 0 (0) 82 0 (0) 
BSK_LPS_IL1a_up 18 0 (0) 82 0 (0) 
BSK_CASM3C_IL6_down 18 1 (6) 82 1 (1) 
BSK_CASM3C_IL6_up 18 0 (0) 82 0 (0) 
BSK_LPS_TNFa_down 18 0 (0) 82 0 (0) 
BSK_LPS_TNFa_up 18 1 (6) 82 3 (4) 

KE3 EMT NVS_ENZ_hMMP2 0 0 (0) 100 0 (0) 18 (18) 
NVS_ENZ_hMMP9 1 0 (0) 99 4 (4) 
BSK_KF3CT_MMP9_down 18 3 (17) 82 11 (13)  
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the response of the corresponding ligand receptor has a great affinity. 
Of the 34 individual chemicals in DPM activated on PPARγ, 17 were 

active in one or more KEs, nine were tested in ToxCast, and the 
remaining eight were predicted using the deep learning models (Table 2; 
the full list is in Table S4). Molecular docking of ToxCast active chem-
icals revealed that benzo[e]pyrene and benzo[a]pyrene were most likely 
to bind to PPARγ, with binding affinities of − 10.5 and − 10.4 kcal/mol, 
respectively. For active chemicals derived from deep learning models, 
dibenzo[a,e]pyrene was most likely to bind to PPARγ with a binding 
affinity of − 12.4 kcal/mol, followed by naphtho[2,3-e]pyrene with 
binding affinities of − 12.0 kcal/mol. 1-Nitronaphthalene from ToxCast 
had the lowest binding affinity of − 7.2 kcal/mol. In general, a binding 
affinity of lower than − 6.0 kcal/mol (Shityakov and Förster, 2014) in-
dicates a capacity to bind to the receptor, so individual chemicals in 
DPM are more likely to bind to PPARγ. 

In the AOP concept, MIE is the only chemical-related event among 
the components of AOP, as long as the MIE is derived, so it can be 
connected to the AO along the subsequent KEs (Allen et al., 2016; Vil-
leneuve et al., 2014). It is therefore the most important event to identify 
which individual chemicals contribute significantly to the toxicity of the 
mixture. The binding energy calculated by molecular docking can not 
only confirm the binding to PPARγ, but also the ranking of the binding 
and toxicity potential of individual chemicals. In addition, ToxCast and 
deep learning models can be used to provide further evidence of the 
potential for these individual chemicals to follow the AOP206 pathway 
through information on the activity of subsequent KEs. 

3.3.2. Experiments on the MIE and KEs of DPM mixture using in vitro 
assays 

Next, in vitro experiments were performed using the DPM mixture 
(Fig. 2). The PPARγ (MIE) protein expression following DPM exposure 
tended to increase with increasing concentration. In addition, the 
expression levels of fibronectin, a fibrosis marker (AO), also increased 
with DPM exposure. However, the expression levels of TGF-β (KE1) and 
the inflammation marker TNF-α (KE2) showing no statistically signifi-
cant difference with DPM exposure (Fig. 2A). For further experiments on 
the activity of the MIE, we evaluated the PPARγ activity of DPM at two 
concentrations and at 24 h using the trans-FACTORIAL assay. As shown 
in Fig. 2B, DPM stimulated PPARγ in a concentration-dependent 
manner. 

In total, we analyzed the activity of individual chemicals included in 
DPM on AOP-related assays and identified the potential mechanism of 

toxicity of DPM through the AOP206. Our study suggests the AOP-based 
approach seems to be useful for expanding prior knowledge of the po-
tential toxicity pathways of the mixture by identifying the activity of 
individual chemicals along AOP. In particular, by identifying potential 
chemicals relevant to the specific AOP, candidate chemicals that 
contribute primarily to the toxic effects of the mixture can be identified. 

However, there are several limitations of this approach. First limi-
tation lies on inconclusive result on MIE. Functional inactivation of 
PPARγ, an MIE of AOP206, is an event in which an external chemical 
binds to PPARγ and acts as an antagonist, thereby deactivating the 
function of PPARγ. In addition to the agonistic and antagonistic effects, 
the effect of chemicals on PPARγ can also affect the level of PPARγ 
protein through the upstream effect, and can also exert agonistic and 
antagonistic effects through physical interaction by binding to PPARγ. It 
is not easy to distinguish these various interactions or effects using one 
assay, and therefore, in this study, all ToxCast assays targeting PPARγ 
were used regardless of agonist or antagonist for screening potential 
chemicals affecting PPARγ. In the results of in vitro experiments, DPM 
increased the activity and expression of PPARγ. Even if the function of 
the receptor is inhibited by the antagonist, the expression of the receptor 
itself may increase. Also, it can be assumed that the role of the antag-
onist is also partially functional in view of the increased activity of the 
subsequent KEs. Therefore, further experiments need to be conducted to 
identify whether the increased expression and activity of PPARγ by DPM 
mixture that were observed in this study are related to the functional 
inactivation of the PPARγ receptor. 

Another limitation of this study is lack of quantitative aspect of DPM 
chemicals. This approach is based on the ratio of active chemicals, and 
therefore could not address quantitative information on the concentra-
tions or mass fraction in DPM. There are 32 of 100 chemicals were tested 
in 4 PPARγ assays, and only 9 of them showed activity with concen-
tration at 50% of maximum activity or the AC50. Unfortunately, the 
number of AC50 data is insufficient, making it difficult to create deep 
learning models that guarantee high accuracy to predict quantitative 
values. Still, the AC50 of nine chemicals from ToxCast can be compared 
with the effective concentration from in vitro experiments with DPM. 
The mass fraction of nine chemicals active in the PPARγ assays ranged 
from 0.0368 to 18.4 mg/kg (Table S1). Using this, the concentration of 
the chemicals contained in the DPM of 10 ppm, the exposure concen-
tration of this study, is estimated from 0.0018 nM to 0.00074 µM, and 
this range is much lower compared to the AC50 of the ToxCast assays 
ranged from 1.06 to 78.72 µM (Table S5). However, since the in vitro 

Table 2 
Calculated binding affinity on PPARγ and activity on PPARγ and key events of the AOP206 of individual chemicals in DPM.  

CAS No. Chemical name PPARγ binding affinity (kcal/mol) Number of active assays 

PPARγ TGF-β NF-κB Inflammation EMT 

ToxCast 
192-97-2 Benzo[e]pyrene − 10.5 1 (TOX21_Ago) 0 1 6 0 
50-32-8 Benzo[a]pyrene − 10.4 1 (TOX21_Ago) 0 0 2 0 
5522-43-0 1-Nitropyrene − 9.9 1 (TOX21_antago) 0 0 2 0 
207-08-9 Benzo[k]fluoranthene − 9.8 1 (TOX21_Ago) 0 0 4 0 
205-99-2 Benzo[b]fluoranthene − 9.6 2 (ATG, TOX21_Ago) 0 0 4 0 
56-55-3 Benz[a]anthracene − 9.6 1 (ATG) 0 0 2 0 
602-60-8 9-Nitroanthracene − 8.3 2 (ATG, TOX21_Ago) 0 0 2 0 
602-87-9 5-Nitroacenaphthene − 8.2 1 (ATG) 0 1 7 0 
86-57-7 1-Nitronaphthalene − 7.2 1 (ATG) 1 1 4 0  

Deep learning 
192-65-4 Dibenzo[a,e]pyrene − 12.4 1 (TOX21_Ago) 0 1 0 0 
193-09-9 Naphtho[2,3-e]pyrene − 12.0 1 (TOX21_Ago) 0 1 0 0 
63041-90-7 6-Nitrobenzo[a]pyrene − 10.7 1 (TOX21_antago) 0 1 0 0 
84030-79-5 Dibenzo[a,k]fluoranthene − 10.4 1 (TOX21_Ago) 0 1 0 0 
57835-92-4 4-Nitropyrene − 9.9 1 (TOX21_Ago) 0 1 0 0 
75321-20-9 1,3-Dinitropyrene − 9.8 2 (ATG, TOX21_antago) 0 1 0 0 
82064-15-1 4-Nitrophenanthrene − 8.7 1 (TOX21_antago) 0 1 0 0 
892-21-7 3-Nitrofluoranthene − 8.5 2 (ATG, TOX21_antago) 0 2 0 0 

ATG, ATG_PPARg_TRANS_up; NVS, NVS_NR_hPPARg; TOX21_Ago, TOX21_PPARg_BLA_Agonist_ratio; TOX21_antago, TOX21_PPARg_BLA_antagonist_ratio. 
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experimental condition of this study is different from the ToxCast assays, 
direct comparison is not desirable. As can be seen from these calcula-
tions, this approach only confirms the activity of individual chemicals 
and therefore does not reflect the combined effects that may occur when 
chemicals are mixed. In addition, since it does not reflect the toxic effect 
of the entire DPM mixture, including the physical effect as particles, 
there is a limitation in fully predicting the toxic pathway of DPM 
through the activity of individual chemicals. Due to these limitations, 
the results from the in vitro experiments showed that TNF-α and TGF-β 
expressions did not match the predicted results of individual chemical. 
Therefore, identifying the quantitative contribution of each individual 
chemical and the potential combined effects will require further 
research to develop a model capable of predicting the quantitative ef-
fects for each individual chemical and their mixture. 

Nevertheless, our results from in vitro experiments using the DPM 
mixture are consistent with analyses of the assay activity of individual 
chemicals, suggesting that the proposed approach using the ToxCast 
database and deep learning models could potentially identify the 
toxicity pathway of the DPM. However, to determine which individual 
chemical activity affects the toxicity of the DPM mixture, it is necessary 
to conduct in vitro experiments on the individual chemicals prioritized in 
ToxCast and deep learning prediction. 

4. Conclusion 

In this study, we have demonstrated that the AOP of PPARγ inacti-
vation leading to pulmonary fibrosis can be applied to identify the 
toxicity pathway of DPM. Our proposed approach using ToxCast and 
deep learning models may be used to identify potential chemicals from 
the mixtures, such as DPM, by determining the activity of individual 
chemicals. Our study also suggests that in silico assays combined with in 
vitro experiments is a useful and efficient tool for identifying the toxicity 
pathway of chemical mixtures. 

Funding 

This work was supported by the Korean Ministry of Environment 
under the ‘Environmental Health R&D Program’ (2017001370001). 

CRediT authorship contribution statement 

Jaeseong Jeong: Writing - original draft, Methodology, Software, 
Formal analysis, Writing - review & editing. Su-yong Bae: Writing - 
original draft, Software, Data curation, Investigation. Jinhee Choi: 
Supervision, Conceptualization, Writing - review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.envint.2020.106339. 

References 

Achilleos, S., Kioumourtzoglou, M.A., Wu, C.Da, Schwartz, J.D., Koutrakis, P., 
Papatheodorou, S.I., 2017. Acute effects of fine particulate matter constituents on 
mortality: A systematic review and meta-regression analysis. Environ. Int. 109, 
89–100. https://doi.org/10.1016/j.envint.2017.09.010. 

Allen, T.E.H., Goodman, J.M., Gutsell, S., Russell, P.J., 2016. A history of the molecular 
initiating event. Chem. Res. Toxicol. 29, 2060–2070. https://doi.org/10.1021/acs. 
chemrestox.6b00341. 

Berman, H.M., Battistuz, T., Bhat, T.N., Bluhm, W.F., Bourne, P.E., Burkhardt, K., Feng, 
Z., Gilliland, G.L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, 
V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J.D., Zardecki, C., 2002. The 
Protein Data Bank. Acta Crystallogr. Sect. D Biol. Crystallogr. 58, 899–907. https:// 
doi.org/10.1107/S0907444902003451. 

Diamantidis, N.A., Karlis, D., Giakoumakis, E.A., 2000. Unsupervised stratification of 
cross-validation for accuracy estimation. Artif. Intell. 116, 1–16. https://doi.org/ 
10.1016/S0004-3702(99)00094-6. 

Groh, K.J., Carvalho, R.N., Chipman, J.K., Denslow, N.D., Halder, M., Murphy, C.A., 
Roelofs, D., Rolaki, A., Schirmer, K., Watanabe, K.H., 2015. Development and 
application of the adverse outcome pathway framework for understanding and 
predicting chronic toxicity: I. Challenges and research needs in ecotoxicology. 
Chemosphere 120, 764–777. https://doi.org/10.1016/j.chemosphere.2014.09.068. 

Hamadache, M., Benkortbi, O., Hanini, S., Amrane, A., 2017. Application of multilayer 
perceptron for prediction of the rat acute toxicity of insecticides. Energy Procedia 
139, 37–42. https://doi.org/10.1016/j.egypro.2017.11.169. 

He, M., Ichinose, T., Yoshida, S., Ito, T., 2017. PM2. 5-induced lung inflammation in 
mice: Differences of inflammatory response in macrophages and type II alveolar 
cells. J. Appl. Toxicol. 1203–1218. https://doi.org/10.1002/jat.3482. 

IARC, I.A. for R. on C., 2014. Diesel and gasoline engine exhausts and some nitroarenes. 
Irwin, J.J., Sterling, T., Mysinger, M.M., Bolstad, E.S., Coleman, R.G., 2012. ZINC: A free 

tool to discover chemistry for biology. J. Chem. Inf. Model. 52, 1757–1768. https:// 
doi.org/10.1021/ci3001277. 

Jeong, J., Garcia-Reyero, N., Burgoon, L.D., Perkins, E.J., Park, T., Kim, C., Roh, J.-Y., 
Choi, J., 2019. Development of Adverse Outcome Pathway for PPARγ antagonism 
leading to pulmonary fibrosis and chemical selection for its validation: ToxCastTM 
database and a deep learning artificial neural network model based approach. Chem. 
Res. Toxicol. 32, 1212–1222. https://doi.org/10.1021/acs.chemrestox.9b00040. 

Kass, R.E., Raftery, A.E., 1995. Bayes Factors. J. Am. Stat. Assoc. 90, 773–795. https:// 
doi.org/10.2307/2291091. 

LaLone, C.A., Ankley, G.T., Belanger, S.E., Embry, M.R., Hodges, G., Knapen, D., Munn, 
S., Perkins, E.J., Rudd, M.A., Villeneuve, D.L., Whelan, M., Willett, C., Zhang, X., 
Hecker, M., 2017. Advancing the adverse outcome pathway framework—An 
international horizon scanning approach. Environ. Toxicol. Chem. 36, 1411–1421. 
https://doi.org/10.1002/etc.3805. 

Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., 
Olson, A.J., 2009. AutoDock4 and AutoDockTools4: Automated docking with 

Fig. 2. Expressions of MIE and KEs proteins (A) and activity of PPARγ (B) on DPM exposure. (A) Beas2B cells were exposed to 0, 0.1, 1 and 10 ppm of DPM for 24 h. 
(B) HepG2 cells that transiently transfected with the optimized nuclear receptor library treated with DPM for 24 h. The profile of the PPARγ activities was determined 
as fold of induction values versus vehicle-treated (DMSO) control. Rosiglitazone, a PPARγ agonist, was used as a positive control. *p < 0.05; **p < 0.01; ***p < 0.001 
in one-way ANOVA test and followed by a post-hoc test (Tukey, p < 0.05). 

J. Jeong et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.envint.2020.106339
https://doi.org/10.1016/j.envint.2020.106339
https://doi.org/10.1016/j.envint.2017.09.010
https://doi.org/10.1021/acs.chemrestox.6b00341
https://doi.org/10.1021/acs.chemrestox.6b00341
https://doi.org/10.1016/S0004-3702(99)00094-6
https://doi.org/10.1016/S0004-3702(99)00094-6
https://doi.org/10.1016/j.chemosphere.2014.09.068
https://doi.org/10.1016/j.egypro.2017.11.169
https://doi.org/10.1021/ci3001277
https://doi.org/10.1021/ci3001277
https://doi.org/10.1021/acs.chemrestox.9b00040
https://doi.org/10.2307/2291091
https://doi.org/10.2307/2291091


Environment International 147 (2021) 106339

7

selective receptor flexibility. J. Comput. Chem. 30, 2785–2791. https://doi.org/ 
10.1002/jcc.21256. 

Park, M., Joo, H.S., Lee, K., Jang, M., Kim, S.D., Kim, I., Borlaza, L.J.S., Lim, H., Shin, H., 
Chung, K.H., Choi, Y., Park, S.G., Bae, M., Lee, J., Song, H., Park, K., 2018. 
Differential toxicities of fine particulate matters from various sources. Sci. Rep. 8, 
1–11. https://doi.org/10.1038/s41598-018-35398-0. 

Piao, J.M., Ahn, J., Ah, K., Yea, K., Ryu, S., Jae, Y., Kristina, H., 2018. Particulate matter 
2. 5 damages skin cells by inducing oxidative stress, subcellular organelle 
dysfunction, and apoptosis. Arch. Toxicol. 92, 2077–2091. https://doi.org/10.1007/ 
s00204-018-2197-9. 

Reynolds, P.R., Wasley, K.M., Allison, C.H., 2011. Diesel particulate matter induces 
receptor for advanced glycation end-products (RAGE) expression in pulmonary 
epithelial cells, and RAGE signaling influences NF-κB-mediated inflammation. 
Environ. Health Perspect. 119, 332–336. https://doi.org/10.1289/ehp.1002520. 

Ristovski, Z.D., Miljevic, B., Surawski, N.C., Morawska, L., Fong, K.M., Goh, F., Yang, I. 
A., 2012. Respiratory health effects of diesel particulate matter. Respirology 17, 
201–212. https://doi.org/10.1111/j.1440-1843.2011.02109.x. 

Robinson, A.L., Grieshop, A.P., Donahue, N.M., Hunt, S.W., Robinson, A.L., Grieshop, A. 
P., Donahue, N.M., Hunt, S.W., Robinson, A.L., Grieshop, A.P., Donahue, N.M., Hunt, 
S.W., 2010. Updating the Conceptual Model for Fine Particle Mass Emissions from 
Combustion Systems Allen L . Robinson Updating the Conceptual Model for Fine 
Particle Mass Emissions from Combustion Systems. J. Air Waste Manage. Assoc. 60, 
1204–1222. https://doi.org/10.3155/1047-3289.60.10.1204. 

Romanov, S., Medvedev, A., Gambarian, Maria, Poltoratskaya, N., Moeser, M., 
Medvedeva, L., Gambarian, Mikhail, Diatchenko, L., Makarov, S., 2008. 
Homogeneous reporter system enables quantitative functional assessment of 
multiple transcription factors. Nat. Methods 5, 253–260. https://doi.org/10.1038/ 
nmeth.1186. 

Sanner, M.F., 1999. Python: a programming language for software integration and 
development. J. Mol. Graph. Model. 17, 57–61. 

Schlesinger, R.B., 2007. The health impact of common inorganic components of fine 
particulate matter (PM2.5) in ambient air: A critical review. Inhal. Toxicol. 19, 
811–832. https://doi.org/10.1080/08958370701402382. 

Shityakov, S., Förster, C., 2014. In silico predictive model to determine vector-mediated 
transport properties for the blood-brain barrier choline transporter. Adv. Appl. 
Bioinforma. Chem. 7, 23–36. https://doi.org/10.2147/AABC.S63749. 

Song, Y., Li, R., Zhang, Y., Wei, J., Chen, W., Kong, C., Chung, A., Cai, Z., 2019. Mass 
spectrometry-based metabolomics reveals the mechanism of ambient fi ne 
particulate matter and its components on energy metabolic reprogramming in BEAS- 
2B cells. Sci. Total Environ. 651, 3139–3150. https://doi.org/10.1016/j. 
scitotenv.2018.10.171. 

Trott, O., Olson, A.J., 2010. AutoDock Vina: improving the speed and accuracy of 
docking with a new scoring function, efficient optimization, and multithreading. 
J. Comput. Chem. 31, 455–461. https://doi.org/10.1002/jcc.21334. 

Villeneuve, D.L., Crump, D., Garcia-Reyero, N., Hecker, M., Hutchinson, T.H., LaLone, C. 
A., Landesmann, B., Lettieri, T., Munn, S., Nepelska, M., Ottinger, M.A., Vergauwen, 
L., Whelan, M., 2014. Adverse outcome pathway (AOP) development I: Strategies 
and principles. Toxicol. Sci. 142, 312–320. https://doi.org/10.1093/toxsci/kfu199. 

Wang, G., Zhang, X., Liu, X., Zheng, J., Chen, R., Kan, H., 2019. Ambient fine particulate 
matter induce toxicity in lung epithelial- endothelial co-culture models. Toxicol. 
Lett. 301, 133–145. https://doi.org/10.1016/j.toxlet.2018.11.010. 

Wang, H., Liu, R., Schyman, P., Wallqvist, A., 2019. Deep neural network models for 
predicting chemically induced liver toxicity endpoints from transcriptomic 
responses. Front. Pharmacol. 10, 1–12. https://doi.org/10.3389/fphar.2019.00042. 

Wang, Y., Zou, L., Wu, T., Xiong, L., Zhang, T., Kong, L., 2019. Identification of mRNA- 
miRNA crosstalk in human endothelial cells after exposure of PM2. 5 through 
integrative transcriptome analysis. Ecotoxicol. Environ. Saf. 169, 863–873. https:// 
doi.org/10.1016/j.ecoenv.2018.11.114. 

Wittwehr, C., Aladjov, H., Ankley, G., Byrne, H.J., de Knecht, J., Heinzle, E., Klambauer, 
G., Landesmann, B., Luijten, M., MacKay, C., Maxwell, G., Meek, M.E.B., Paini, A., 
Perkins, E., Sobanski, T., Villeneuve, D., Waters, K.M., Whelan, M., 2017. How 
adverse outcome pathways can aid the development and use of computational 
prediction models for regulatory toxicology. Toxicol. Sci. 155, 326–336. https://doi. 
org/10.1093/toxsci/kfw207. 

Zheng, Y., Lan, H., Thiruvengadam, M., Tien, J.C., Li, Y., 2017. Effect of single dead end 
entry inclination on DPM plume dispersion. Int. J. Min. Sci. Technol. 27, 401–406. 
https://doi.org/10.1016/j.ijmst.2017.03.003. 

J. Jeong et al.                                                                                                                                                                                                                                    

https://doi.org/10.1002/jcc.21256
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1038/s41598-018-35398-0
https://doi.org/10.1007/s00204-018-2197-9
https://doi.org/10.1007/s00204-018-2197-9
https://doi.org/10.1289/ehp.1002520
https://doi.org/10.1111/j.1440-1843.2011.02109.x
https://doi.org/10.1038/nmeth.1186
https://doi.org/10.1038/nmeth.1186
http://refhub.elsevier.com/S0160-4120(20)32294-7/h0100
http://refhub.elsevier.com/S0160-4120(20)32294-7/h0100
https://doi.org/10.1080/08958370701402382
https://doi.org/10.2147/AABC.S63749
https://doi.org/10.1016/j.scitotenv.2018.10.171
https://doi.org/10.1016/j.scitotenv.2018.10.171
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1016/j.toxlet.2018.11.010
https://doi.org/10.3389/fphar.2019.00042
https://doi.org/10.1016/j.ecoenv.2018.11.114
https://doi.org/10.1016/j.ecoenv.2018.11.114
https://doi.org/10.1016/j.ijmst.2017.03.003

	Identification of toxicity pathway of diesel particulate matter using AOP of PPARγ inactivation leading to pulmonary fibrosis
	1 Introduction
	2 Materials and methods
	2.1 Preparation of PM2.5
	2.2 ToxCast assays relevant to the AOP of pulmonary fibrosis
	2.3 Deep learning models
	2.3.1 Data preparation
	2.3.2 Data imbalance
	2.3.3 Multilayer perceptron modeling

	2.4 Docking simulations
	2.4.1 Preparation of ligands
	2.4.2 Preparation of PPARγ
	2.4.3 Docking simulations

	2.5 PPARγ binding assay
	2.6 Cell culture and treatment
	2.7 Western blot
	2.8 Statistics

	3 Results and discussion
	3.1 Preparation of ToxCast assays and deep learning models relevant to AOP206
	3.2 Identification of individual chemicals of DPM interfering with the AOP related assays
	3.3 Confirmation of the MIE and KEs activity
	3.3.1 Validation of the MIE of individual chemicals in DPM using in silico molecular docking
	3.3.2 Experiments on the MIE and KEs of DPM mixture using in vitro assays


	4 Conclusion
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Appendix A Supplementary data
	References


